B.43. BADANIE NEUROтокSYczności NA GRYZONiACH

1. METODA

Niniejsza metoda jest równoważna metodzie opisanej w Wytycznej OECD nr 424 (1997).

Badanie przeprowadzone zgodnie z niniejszą metodą badawczą ma na celu dostarczenie informacji koniecznych dla potwierdzenia lub dalszego scharakteryzowania potencjalnej neurotoksyczności substancji chemicznych u dorosłych zwierząt. Może ona być łączona z innymi metodami badawczymi przy powtarzanym podawaniu dawki bądź też może być wykonywana jako oddzielne badanie. W projektowaniu badań opartych o niniejszą metodę badawczą zaleca się korzystanie z Dokumentu Przewodniego OECD dotyczącego strategii i metod badawczych neurotoksyczności (zobacz pozycja 1 piśmiennictwa). Jest to szczególnie ważne, gdy dokonuje się modyfikacji obserwacji i procedur badawczych zalecanych przy rutynowym stosowaniu niniejszej metody. Dokument Przewodni został przygotowany dla ułatwienia wyboru innych procedur badawczych stosowanych w szczególnych okolicznościach.

Oszacowanie neurotoksyczności rozwojowej nie jest przedmiotem niniejszej metody.
1.1. Wstęp

W szacowaniu i ocenie toksykowego charakteru substancji chemicznych ważne jest, aby wziąć pod uwagę potencjalne wystąpienie skutków neurotoksycznych. Już metoda badawcza przy powtarzanym podawaniu dawki uwzględnia obserwacje pod kątem potencjalnej neurotoxycznoci. Niniejsza metoda badawcza może być stosowana w planowaniu badania mającego na celu uzyskanie dalszych informacji, bądź ich potwierdzenie, co do skutków neurotoksycznych obserwowanych w badaniach toksykowości przy powtarzanym narażeniu. Uwzględnienie jednak możliwej neurotoxycznoci pewnych klas substancji chemicznych może sugerować, że jest ona bardziej właściwie oszacowana przez niniejszą metodę bez wcześniejszych ustaleń możliwej neurotoxycznoci w badaniach przy powtarzanym dawkowaniu. Takie rozważania zawierają na przykład:

— obserwacje objawów neurologicznych lub zmian neuropatologicznych w badaniach toksykowości innych niż te z powtarzanym dawkowaniem lub

— strukturalne pokrewieństwo lub inne informacje łączące je ze znymi substancjami o działaniu neurotoksycznym.

Ponadto mogą wystąpić inne przypadki, gdy zastosowanie niniejszej metody badawczej jest właściwe; dalsze szczegóły można znaleźć w piśmie (pozycja 1 pośmiernictw).

Niniejszą metodę opracowano w taki sposób, aby mogła być przystosowana do spełnienia szczególnych potrzeb, potwierdzić specyficzność neurotoxycznoci histopatologiczną lub behawioralną substancji chemicznej, a także dostarczyć charakterystykę i ocenę ilościową reakcji neurotoksycznych.

W przeszłości neurotoxycznoci przyrównywano do neuropatii obejmującej zmiany neuropatologiczne lub zaburzenia neurologiczne, takie jak napad padaczkowy, paraliż lub drzenie. Chociaż neuropatia jest ważnym objawem neurotoxycznoci to obecnie oczywistym jest, że istnieją wiele innych objawów toksykowości w układzie nerwowym (np.: utrata koordynacji motorycznej, osłabienie czucia, zaburzenia w uczeniu i zapamiętywaniu), które nie mają odbicia w neuropatii lub innych rodzajach badań.

Niniejsza metoda badawcza dotycząca neurotoxycznoci przeznaczona jest do wykrywania głównych skutków neurobehawioralnych i neuropatologicznych u dorosłych zwierząt. Podczas gdy skutki behawioralne, nawet pod nieobecnością zmian morphologicznych, mogą odzwierciedlać szkodliwy wpływ na organizm, to nie wszystkie zmiany behawioralne są specyficzne dla układu nerwowego. Dlatego każda obserwacja do zmian powinna być oszacowana w połączeniu z danymi histopatologicznymi, hematologicznymi lub biochemicznymi, jak również wynikami innego rodzaju badań toksykowości układowej. Do badań ujętych w niniejszej metodzie mających na celu dostarczenie charakterystyki i oceny ilościowej reakcji neurotoksycznych zalicza się procedury histopatologiczne i behawioralne, które mogą być dalej uzupełnione przez badania elektrofizjologiczne i/lub biochemiczne (zobacz pozycje 1, 2, 3 i 14 pośmiernictwa).

Substancje neurotoksyczne mogą działać na wiele miejsc w obrębie układu nerwowego za pomocą wielu mechanizmów. Zadajemy zestaw testów nie jest w stanie w pełni oszacować potencjału neurotoksycznego wszystkich substancji chemicznych, dlatego konieczne może być zastosowanie innych badań in vivo lub in vitro specyficznych dla rodzaju obserwowanej lub przewidywanej neurotoxycznoci.

Niniejsza metoda badawcza może być także stosowana w połączeniu z wytycznymi zawartymi w Dokumencie Przewodnim OECD na temat strategii i metod badawczych neurotoxycznosci (zobacz pozycja 1 piśniennictwa), do planowania badań zamierzających dalej charakteryzować lub zwiększać czułość oceny iłościowej typu dawka-odpowiedź lub lepiej oszacować poziom bez obserwowanego szkodliwego działania lub uzasadnić znane lub spodziewane zagrożenia powodowane przez substancję. Na przykład można zaplanować badanie mające na celu identyfikację i oszacowanie mechanizmów neurotoksycznych lub uzupełnić dane już istniejące z podstawowych obserwacji neurobehawioralnych i neuropatologicznych. Takie badania nie muszą powtarzać danych, które były wygenerowane z zastosowania standardowych procedur niniejszej metody, jeżeli te dane już istnieją i nie są uważane za niezbędne do interpretacji wyników badania.

Badanie neurotoxycznosci, wykonywane osobno lub w połączeniu, dostarcza informacji, które mogą:

— stwierdzić, czy badana substancja działa na układ nerwowy w sposób odwracalny lub nieodwracalny,

— przyczynić się do charakterystyki zmian w układzie nerwowym towarzyszącym narażeniu na badaną substancję i do zrozumienia mechanizmów leżących u podstaw tych zmian,

— określić zależności między wielkością dawki a czasem wystąpienia odpowiedzi (reakcji) celem oszacowania poziomu bez obserwowanego działania szkodliwego (stosowanego do określenia kryteriów bezpieczeństwa substancji chemicznej).

Niniejsza metoda badawcza opiera się na podawaniu badanej substancji drogą pokarmową. Inne drogi podawania (np.: przez skórę lub drogą inhalacyjną) mogą być bardziej właściwe, ale mogą wtedy wymagać modyfikacji zalecanych procedur. Wybór drogi podawania zależy od sposobu narażenia człowieka i dostępnych informacji toksykologicznych lub kinetycznych.

1.2. Definicje

Szkodliwy skutek: jest każdą zmianą w stosunku do wyjściowej zależną od narażenia, która zmniejsza zdolność organizmu do przeżycia, rozmnażania się lub przystosowania do środowiska.
1.4. Opis metody badawczej

1.4.1. Wybór gatunku zwierząt


1.4.2. Warunki przetrzymywania i karmienia zwierząt


1.4.3. Przygotowanie zwierząt

Zdrowe, młode zwierzęta są w sposób losowy przyprysywane do grup narażonych i kontrolnej. Klątki powinny być umiejscowione w taki sposób, aby zmi- nimalizować ewentualne skutki wynikające z ich usy- tuowania. Zwierzęta są jednoznacznie znakowane i trzymane w klatkach przez przynajmniej 5 dni przed rozpoczęciem badania celem aklimatyzacji do warun- ków laboratoryjnych (zobacz pozycja 5 piśmiennic- twa).

1.4.4. Sposób podawania i przygotowanie dawek

Niniejsza metoda badawcza przeznaczona jest do podawania badanej substancji drogą pokarmową. Po- dawanie drogą pokarmową może być wykonywane za pomocą sondy, w paszy, wodzie pitnej lub kapsułach. Inne sposoby podawania (np. przez skórę lub drogą inhalacyjną) mogą być stosowane, ale mogą wymagać modyfikacji stosowanych procedur. Wybór drogi narażenia zależy od profilu narażenia ludzi i dostęp- nych informacji toksykologicznych i kinetycznych. Na- leży podać uzasadnienie wyboru drogi narażenia i wy- nikające stąd modyfikacje procedur metody badaw- czej.
Jeżeli to konieczne, to badana substancja może być rozpuszczona lub zawieszona w odpowiednim nośniku. W pierwszej kolejności zaleca się stosowanie roztworów/zawiesin wodnych, a w dalszej kolejności roztworów/zawiesin olejowych (np. w oleju kukurydzianym) i w końcu roztworów/zawiesin w innych nośnikach. Charakterystyka toksykologiczna nośnika powinna być znana. Ponadto należy uwzględnić następujące właściwości nośnika: wpływnośny na absorpcję, rozmieszczenie, metabolizm i retencję badanej substancji, które mogą zmienić jej charakterystykę toksykologiczną, wpływ na komercję paszy i spożycie wody lub stan odżywienia zwierząt.

1.5. Sposoby postępowania

1.5.1. Liczba i płeć zwierząt

Jeżeli badanie wykonywane jest jako oddzielne, to wtedy należy stosować przynajmniej 20 zwierząt (10 samiec i 10 samców) w każdej grupie narażonej i kontroli celem dokonania szczegółowych obserwacji klinicznych i czynnościowych. Przynajmniej pięć samców i pięć samców z tych dziesięciu samców i dziesięć samicy powinno być poddane perfuzji in situ i użyć do szczegółowych badań neurohistopatologicznych pod koniec doświadczenia. W przypadkach gdy tylko ograniczona liczba zwierząt w danej grupie dawkowej przejawia oznaki skutków neurotoksycznych, należy uwzględnić te zwierzęta wśród tych przeznaczonych do perfuzji. Jeżeli badanie jest wykonywane w połączeniu z innym przy powtarzanym dawkowaniu, to należy stosować odpowiednio liczby zwierząt tak, by spełnić wymagania obydwu metod. Minimalne liczby zwierząt na grupę w różnych kombinacjach badań podano w tabeli B.43.1. Jeżeli planuje się likwidację zwierząt w trakcie doświadczenia bądź też dodatkowe grupy celem obserwacji odwrażalności, trwałości lub opóźnionego występowania skutków toksycznych po narażeniu lub gdy planuje się dodatkowe obserwacje, to wtedy liczba zwierząt powinna być zwiększona tak, by zapewnić zwierzęta potrzebne do obserwacji i badań histopatologicznych.

1.5.2. Grupy narażane i kontrolne

Ogólnie stosować należy przynajmniej trzy grupy narażane i grupę kontrolną, ale jeżeli na podstawie innych danych nie przewiduje się skutków przy powtarzanym dawkowaniu dawki 100 mg/kg masy ciała/dzień, to można wykonać badanie przy zastosowaniu dawki granicznej. Jeżeli brak jest wiarygodnych danych, to można przeprowadzić badanie wstępne celem ustalenia zakresu dawek w badaniu właściwym. Zwierzęta grupy kontrolnej powinny być traktowane tak samo pod każdym względem jak zwierzęta narażane, z wyjątkiem podawania badanej substancji. Jeżeli przy podawaniu badanej substancji stosuje się nośnik, to grupa kontrolna powinna otrzymać nośnik w najwyższej zastosowanej objętości.

1.5.3. Sprawdzenie wiarygodności

Laboratorium wykonujące badanie powinno przedstawić dane wykazujące jego zdolność do wykonywania badania i czołowo stosowanych sposobów postępowania. Takie dane powinny dostarczać do wodów na zdolność do wykrywania i ilościowej oceeny, o ile dotyczy, zmian w różnych parametrach zalecanych do obserwacji, takich jak objawy autonomiczne, reakcje na bodźce, siła uchwytu i aktywność ruchowa. Informacje o substancjach, które powodują różne rodzaje reakcji neurotoxycznyczych i mogą być stosowane jako kontrola pozytywna, można znaleźć w pozycjach od 2 do 9 piśmiennictwa. Dane archiwalne mogą być stosowane, jeżeli podstawowe aspekty sposobów postępowania pozostają takie same. Zalecana jest określenie aktualizacji danych archiwalnych. Nowe dane wykazujące ciągłą zdolność sposobów postępowania powinny być wygenerowane, gdy jakieś podstawowe elementy badania lub sposób postępowania zostały zmienione przez laboratorium wykonujące.

1.5.4. Wybór dawek

Przy doborze poziomu dawek powinny byćbrane pod uwagę jakiekolwiek wcześniejsze obserwacje toksykologiczne i kinetyczne dostępne dla badanego związku lub materiałów podobnych. Najwyższy poziom dawkowania należy dobrać w taki sposób, by wywołać skutki neurotoxyczne lub wyraźne toksyczne skutki ogólnoustrojowe. W dalszej kolejności małącą sekwencję dawek powinna być dobra na w taki sposób, by wykazać zależność typu dawka-odpowiedzieś i poziom bez obserwowanego działania szkodliwego (NOAEL) w najniższej dawce. W zasadzie poziomy dawkowania należy dobrać w taki sposób, by pierwotne działanie toksyczne na układ nerwowy można było odróżnić od wpływów związanych z toksycznością ogólnoustrojową. Stosowanie dwóch do trzech przedziałów jest optymalne, a często dodatkowa czwarta grupa jest lepsza niż stosowanie bardzo dużych przedziałów (np. większych niż 10) pomiędzy dawkami. Tam gdzie istnieje wiarygodna ocena narażenia ludzi, to także ona powinna być brana pod uwagę.

1.5.5. Badanie przy zastosowaniu dawki granicznej

Jeżeli badanie w jednej dawce na poziomie przy najmniej 1000 mg/kg masy ciała/dzień, przy zastosowaniu procedury opisanej w niniejszej metodzie, nie daje rezultatu w postaci możliwych do zaobserwowania skutków neurotoxycznyczych i jeżeli nie należał to spodziewać się skutków na podstawie istniejących danych to do strukturalnie podobnych związków, to wtedy pełne badanie na trzema poziomami dawek może być uważane za niepotrzebne. Spodziewane narażenie ludzi może wskazywać na potrzebę zastosowania dawki wyższej dawki stosowanej doustnie w badaniu dawki granicznej. W przypadku innych sposobów podawania, takich jak inhalacyjne bądź skórne, właściwości fizykochemiczne badanej substancji, takie jak rozpuszczalność, często mogą wskazywać na maksymalny możliwy do uzyskania poziom narażenia. W badaniu ostrym doustnym dawka w badaniu dawki granicznej powinna wynosić przynajmniej 2000 mg/kg.
1.5.6. Podawanie dawek

Zwierzęta są narażane codziennie, siedem dni w tygodniu, przez przynajmniej 28 dni; zastosowanie 5-dniowego reżimu dawowania lub krótszego czasu narażenia musi być uzasadnione. Gdy substancja podawana jest sadowa, należy podawać pojedyncze dawki, stosując odpowiednią siedzę żółtadzową lub kaninę lub inicjową. Maksymalna objętość cieczy, która może być podana jednorazowo, zależy od rozmiaru zwierzęcia. Objętość nie powinna przekraczać 1 ml/100 g masy ciała. Jednakże w przypadku rozwodów weterynaryjnych można brać pod uwagę użycie 2 ml/100 g masy ciała. Należy zminimalizować zmiany objętości, stosując je tylko w przypadku, aby zapewnić stałą objętość na wszystkich poziomach dawek poza substancjami drażniącymi i utożsamiającymi, które w wyższych stężeniach mogą zwiększyć skutki działania.

W przypadku substancji podawanych z paszą lub wodą pitną ważne jest, by zapewnić, że wprowadzenie odpowiedniej ilości badanej substancji nie zakłóci normalnego żywienia lub bilansu wodnego zwierzęcia. Gdy badana substancja podawana jest w paszy, należy stosować stałe stężenie w paszy (ppm) lub stałe dawki w stosunku do masy ciała; należy opisać stosowany sposób. Jeżeli substancja podawana jest sadowa, to powinno to nastąpić w ciągu mniej więcej stałych porach każdego dnia i być dostosowane na stałym poziomie względem masy ciała. Gdy badanie przy powtarzającym podawaniu pokarmowym jest stosowane jako wstęp do badania długoterminowego, to w obydwu badaniach stosować należy taką samą paszę. W badaniach ostrzych, jeżeli zastosowanie pojedynczych dawek jest niemożliwe, to należy podawać substancję w mniejszych częstotliwościach przez okres czasu nieprzekraczający 24 godzin.

1.6. Obserwacje

1.6.1. Częstotliwość obserwacji i badań

W badaniach z powtarzającym dawowaniem okres obserwacji powinien pokrywać okres dawowania. W badaniach ostrzych po narażeniu należy stosować 14-dniowy okres obserwacji. Dla zwierząt grup satelitarnych, które są przestrzemiane bez narażenia przez wstrzyknięcie czas przed zakończeniem obserwacji, obserwacje powinny pokrywać się z tym czasem.

Obserwacje należy czynić z odpowiednią częstotliwością celem maksymalizacji prawdopodobieństwa wykrycia jakichkolwiek nieprawidłowości behawioralnych i/lub neurologicznych. Obserwacje najlepiej prowadzić o tej samej porze każdego dnia, biorąc pod uwagę szczytowy okres przewidywanych skutków po dawowaniu. Częstotliwość obserwacji klinicznych i badań czynnościowych jest podana w tabeli B.43.2. Jeżeli dane kliniczne i inne uzyskane w poprzednich badaniach wskazują na potrzebę zastosowania innych czasów obserwacji, badań lub okresów poobserwacyjnych, to należy przyjąć alternatywny schemat celem uzyskania maksimum możliwych obserwacji. Należy przedstawić uzasadnienie zmian schematu obserwacji.

1.6.1.1. Obserwacje ogólnego stanu zdrowia i śmierelności/zachorowalności

Wszystkie zwierzęta należy dokładnie obserwować pod względem stanu ich zdrowia przynajmniej raz dziennie, a także przynajmniej dwa razy dziennie pod względem śmierci/zniesienia i zachorowalności.

1.6.1.2. Szczegółowe obserwacje kliniczne

Szczegółowe obserwacje kliniczne należy prowadzić dla wszystkich zwierząt wybranych do tego celu (zobacz tabela B.43.1) raz przed pierwszym narażeniem (by umożliwić dalsze porównania) i następnie w różnych odstępach w zależności od czasu trwania badania (zobacz tabela B.43.2). Szczegółowe obserwacje kliniczne w grupie satelitarnej należy prowadzić na koniec okresu rekwalificacji. Szczegółowe obserwacje kliniczne należy prowadzić poza klatką w standardowych warunkach. Stosowane kryteria i skale punktowe powinny być wyraźnie określone przez laboratorium badawcze. Należy dołożyć starań, aby zmienność warunków doświadczalnych była minimalna (nieznaczna układowo z narażeniem) i by obserwacje były dokonywane przez wyszkolony personel nieznanego poziomu narażenia zwierząt.

Zaleca się, aby obserwacje były prowadzone w sposób strukturalny o dobrze określonych kryteriach (wliczając definicje normalnego „zakresu”), które są systematycznie stosowane dla każdego zwierzęcia w każdym czasie obserwacji. „Normalny zakres” powinien być odpowiednio udokumentowany. Wszelkie zaobserwowane oznaki powinny być zapisane. Kiedy tylko to jest możliwe, notować także należy wielkość obserwowanych zmian. Obserwacje kliniczne powinny obejmować, ale nie ograniczać się do zmian na skórze, sierści, oczach, błonach śluzowych, występowaniu wyziębienia i wydylaniu oraz objawów autonomicznych i innym (tzw. zwężenie, śródlędniowe, rozszerzenie żył, nietypowy sposób oddychania i/ulub oddychania, oznaki nietypowego oddychania moczu i biegunki, kolor, zmiany zabarwienia moczu).

Notować należy wszelkie nietypowe reakcje dotyczące pozycji ciała, poziomu aktywności (np. zwiększenie lub zmniejszenie penetracji standardowego obszaru) i koordynacji ruchów. Zapisywać należy zmiany w chodzie (np. chód kaczkowaty, niezborność kończyn), postawie (np. zgrubiony grzbiet) i reakcji na traktowanie zwierząt lub inne bodźce otoczenia, a także pojawienie się ruchów tonicznych lub klinicznych, konwulsji lub drgawek, stereotypii (np. nadmiernie czuszenie się, niezwykłe ruchy głowy, krążenie w kółko) lub dźwięcze zachowanie się (np. kąsanie lub nadmiernie lizanie się, samoakaleczenie, chodzenie tyłem, wydawanie dźwięków) lub agresja.

1.6.1.3. Badania czynnościowe

Podobnie do badań klinicznych badania czynnościowe należy przeprowadzić raz przed narażeniem i często w dalszej kolejności na wszystkich zwierzętach przeznaczonych do tego celu (zobacz tabela B.43.1). Częstotliwość badań czynnościowych jest także zależ-
na od czasu trwania badania (zobacz tabela B.43.2). W uzupełnieniu okresów obserwacji ustalonych w ta- beli B.43.2 obserwacje czynnościowe grup satelitar- nych powinny być wykonane możliwie blisko terminu likwidacji zwierząt. Do badań czynnościowych zalicza się reaktywność czuciuową na bodźce różnej modalno- ści, np.: bodźce słuchowe, wizualne i proprioceptywne (zobacz pozycje 5, 6 i 7 piśmiennictwa), oszacowanie siły uścisku (zobacz pozycja 8 piśmiennictwa) i osza- cowanie aktywności motorycznej (zobacz pozycja 9 pi- śmiennictwa). Aktywność motoryczna powinna być mierzona urządzeniem automatycznym zdolnym do wykrywania wzrostu i spadku aktywności. Jeżeli stoso- wany jest inny zdefiniowany system, to powinien on dawać wyniki ilościowe, a jego czułość i wiarygod- ność powinny być wykazane. Każde urządzenie po- winno być sprawdzone celem zapewnienia powtarzał- ności w czasie i zgodności pomiędzy urządzeniami. Dalsze szczegóły co do postępowania podano w od- powiednich pozycjach piśmiennictwa. Jeżeli brak jest danych (np.: struktura-aktywność, dane epidemiolo- giczne, inne badania toksykologiczne) wykazujących możliwe skutki neurotoxyczne, to należy wziąć pod uwagę wykonanie bardziej specjalistycznych badań czynności sensorycznych i motorycznych lub uczenia się i zapamiętywania celem zabania tych skutków bardziej szczegółowo. Więcej informacji na ten temat ba- dów specjalistycznych i ich zastosowania podano w pozycji 1 piśmiennictwa.

W wyjątkowych sytuacjach zwierzęta wykazujące oznaki toksyczności w stopniu znacznie zakłócającym badania czynnościowe można wykluczyć z tych ba- dów. Należy przedstawić uzasadnienie wykluczenia zwierząt z badań czynnościowych.

1.6.2. Masa ciała i spożycie paszy/wody

W badaniach, które trwają do 90 dni, wszystkie zwierzęta powinny być ważone przynajmniej raz w ty- godniu, a pomiary spożycia paszy (wody, gdy bada- na substancja podawana jest w tym nośniku) w odstę- pach przynajmniej tygodniowych. W przypadku badań długoterminowych wszystkie zwierzęta powinny być ważone przez pierwszych 13 tygodni raz w tygodniu i następnie przynajmniej co 4 tygodnie. Pomiary spo- życia paszy (wody, gdy badana substancja podawana jest w tym nośniku) powinny być dokonywane przez pierwszych 13 tygodni raz w tygodniu i następnie w około 3-miesięcznych odstępach, chyba że stan zdrowia lub zmiany masy ciała sugerują inny sposób postępowania.

1.6.3. Badania okulistyczne

W badaniach o czasie trwania dłuższym niż 28 dni badanie okulistyczne przy pomocy oftaalmoskopu lub innego równorzędnego urządzenia powinno być wy- konane przed podaniem badanej substancji i na ko- niec badania u wszystkich zwierząt lub, co najmniej u zwierząt otrzymujących najwyższą dawkę i zwierząt z grupy kontrolnej. Jeżeli wykryte zostaną zmiany w oczach lub jeżeli oznaki kliniczne wskazują na po- trzebę badań, to wszystkie zwierzęta należy poddać ta- kim badaniom. W przypadku badań długotermino- wych badania należy także przeprowadzić po 13 tygo- dniach. Nie ma potrzeby prowadzenia badań okul- istycznych, jeżeli takie wyniki są już dostępne z innych badań o podobnym czasie trwania i podobnych poziomach dawek.

1.6.4. Hematologia i biochemia kliniczna

Gdy badanie neurotoxyczności jest wykonywane łącznie z ogólnoustrojowym badaniem toksyczności o powtarzanym dawkowaniu, to badania hematolo- giczne i biochemia kliniczna powinny być wykonane w odpowiednim czasie zgodnie z odpowiednią meto- dą badania toksyczności ogólnoustrojowej. Pobranie próbek powinno być wykonane w taki sposób, by zmi- nimalizować jakiejkolwiek potencjalne skutki neurobe- hwiarowe.

1.6.5. Badania histopatologiczne

Badanie histopatologiczne powinno uzupełnić i rozszerzać obserwacje poczynione podczas fazy in vi- vo badania. Tkanki z przynajmniej 5 zwierząt/plęk/gru- pę (zobacz tabela B.43.1 i następnie akapit) powinny być utrwalone in situ przy zastosowaniu ogólnie uzná- nych metod perfuzji i utrwalania (zobacz pozycja 3 rozdział 5 piśmiennictwa i pozycja 4 rozdział 50 pi- śmiennictwa). Zapisywać należy wszelkie zmiany ma- kroskopowe. Gdy badanie jest wykonywane jako sa- modzielne lub w celu wykrycia neurotoxyczności lub określenia skutków neurotoxycznych, pozostałe zwie- rzęta mogą być użyte do badań neurobehawioralnych (zobacz pozycje 10 i 11 piśmiennictwa), neuropatol- ogicznych (zobacz pozycje 10, 11, 12 i 13 piśmienni- twa), neurochemicznych (zobacz pozycje 10, 11, 14 i 15 piśmiennictwa) lub elektrofizjologicznych (zobacz pozycje 10, 11, 16 i 17 piśmiennictwa) uzupełniających procedury niniejszej metody lub do zwiększenia liczby zwierząt do badań histopatologicznych. Te procedury uzupełniające mają szczególne znaczenie, gdy obser- wacje empiryczne lub przewidywane skutki wskazują na specyficzny rodzaj lub sposób działania neuroto- sycznego (zobacz pozycje 2 i 3 piśmiennictwa). Pozo- stałe zwierzęta można także odpowiednio użyć do ba- dów patologicznych opisanych w metodach z zasto- sowaniem powtarzanego dawkowania.

Wszystkie próbki tkanki należy wybierać ogólne stosowanymi technikami barwienia z wykorzystaniem hematometyli i ezowy (H&E), zatopić w parafinie i zebrać technikę mikroskopową. Jeżeli obserwuje się lub podejrzewa oznaki ogólnej neuropatii obwodowej, to należy badać próbki tkanki nerwu obwodowego za- topiony w tworzywie sztucznym. Obrazy kliniczne mogą także sugerować badania dodatkowych miejsc bądź też zastosowanie specjalnych technik barwienia. Wskazówki dotyczące badania innych miejsc można znaleźć w pozycjach 3 i 4 piśmiennictwa. Pomoce mogą być odpowiednie barwienia celem wykazania specyficznych rodzajów zmian patologicznych (zobacz pozycja 18 piśmiennictwa).

Reprezentatywne skrawki centralnego i obwodu- wego układu nerwowego powinny być badane histo- logicznie (zobacz pozycja 3 rozdział 5 piśmiennictwa).
i pozycja 4 rozdział 50 piśmiennictwa. Badane powi-
no być: przodomógówie, część centralna mózgu,
w tym przekrój przez podwzgórze, śródmóźdże, móź-
dże, most, rdzeń przedłużony, oko z niewiem wroko-
wym i siatówką, rdzeń kręgowy z odcinka szyjnego
i zgrubienia lędźwiowego, zwój górny nerwu błędnego,
grzbietowe i brzuszne włóknia nerwu błębnego,
proksymalny nerw kulzowy, proksymalny nerw pisz-
czelowy (przy kolanie), nerw piszczelowy mięśnia łyd-
kowego. Szejkia rdzenia kręgowego i nerwu obwodo-
owego powinna zawierać przekroje podłużne i po-
przęcne. Szczególną uwagę należy zwrócić na unac-
chynienie układu nerwowego. Zbadając należy także
próbkę mięśnia szkieletowego, w szczególności łydko-
wego. Uwagę należy także zwrócić na miejsca o struk-
turze komórkowej i włóknistej w centralnym i obwo-
dowym układzie nerwowym, o których wiadomo, że
szczególnie podlegają wpływom przez substancje
neurotoksyczne.

Wskazówki dotyczące zmian neuropatologicznych
 typowych po narażeni na substancje toksyczną moż-
na znaleźć w pozycjach 3. 4 piśmiennictwa. Zaleca się
etapowe badanie próbek tkanek, gdzie wycinki uzys-
kané od zwierząt z grupy otrzymującej substancję
w najwyższej dawce są najpierw porównywane z tymi
uzzyskanymi od zwierząt z grupy kontrolnej. Jeżeli nie
obszerwuje się zmian neuropatologicznych w wycinkach
z tych grup, to dalsza analiza nie jest konieczna.
Jeżeli w wycinkach uzyskanych od zwierząt z grupy
otrzymującej substancję w najwyższej dawce obser-
vuje się zmiany, to próbniki tkanek uzyskanych od zwie-
rząt, które mogły podlegać potencjalnym wpływom
substancji podawannej w dawkach pośrednich i najniższej,
muszą zostać zakodowane i kolejno przebadane.

Jeżeli w badaniach jakościowych zostaną stwierdzo-
dzone zmiany neuropatologiczne, to należy przepro-
wadzić drugie badanie we wszystkich miejscach ukła-
du nerwowego wykazujących te zmiany. Skrawki uzys-
kane od zwierząt otrzymujących substancje w dawkach
na wszystkich badanych poziomach z każdego
potencjalnie zmienionego regionu należy zakodować
i zbadać losowo bez znajomości kodu. Należy zapisać
częstość każdej zmiany i jej nasilenie. Po zbadaniu
wszystkich regionów ze wszystkich grup otrzymuję-
cych substancje w różnych dawkach kod należy zła-
mać i wykonać analizę statystyczną celem oszacowa-
nia zależności dawka-odpowiedź. Należy opisać przy-
kładły różnych stopni nasilenia każdej zmiany.

Zmiany neuropatologiczne należy oceniać w kon-
tekście obserwacji i pomiarów behawioralnych, a tak-
że innych danych z poprzednich i obecnego badania
toksyczności substancji.

2. WYNIKI

2.1. Opracowanie wyników

Należy przedstawić wyniki dla poszczególnych
zwierząt. Ponadto wszystkie dane należy zestawić
w postaci tabelarycznej, wykazując dla każdej grupy
i grupy kontrolnej liczbę zwierząt z początku do-
świadczenia, liczbę zwierząt martwych w trakcie bada-
nia lub uśmierconych w humanitarny sposób oraz
czas ich padnięcia lub uśmierzenia, liczbę zwierząt wy-
kazujących oznaki toksyczności, opis zaobserwowan-
ych oznak toksyczności wraz z czasem ich pojawienia
się, czasem trwania, rodzajem i nasileniem wszelkich
skutków toksycznych, liczbę zwierząt wykazujących
zmiany chorobowe wraz z ich rodzajem i nasileniem.

2.2. Oszacowanie i interpretacja wyników

Dane z badań należy wycenić pod względem wy-
stępowania, nasilenia i korelacji skutków neurobeha-
wioralnych i neuropatologicznych (neurochemicznych
lub elektrofizjologicznych skutków także, jeżeli prow-
dzono były badania uzupełniające) oraz jakichkolwiek
innym obserwowanych skutków. O ile to możliwe, to
dane liczbowe powinny zostać poddane właściwej
i ogólnie uznanej analizie statystycznej. Metody staty-
styczne należy dobrać na etapie projektowania do-
świadczenia.

3. SPRAWOZDANIE

Sprawozdanie powinno zawierać następujące
informacje:

Badana substancja:

— właściwości fizykochemiczne (w tym izomerzy-
cja, czystość),

— dane identyfikacyjne.

Nośnik (o ile był stosowany):

— uzasadnienie wyboru nośnika.

Zwierzęta doświadczalne:

— stosowany gatunek/szczep,

— liczba, wiek i pleć zwierząt,

— źródło pochodzenia, warunki przetrzymywania,
pasa itd.,

— masy zwierząt (każe zwierzę oddzielnie) na po-
czątku doświadczenia.

Warunki przeprowadzania badania:

— szczegóły dotyczące formułowanie badanej substan-
cji/przygotowania paszy, uzyskane stężenie, trwa-
łość i jednorodność używanego preparatu,

— podawane dawki, w tym dane dotyczące nośnika,
jej objętości i stanu skupienia,

— szczegóły podawania badanej substancji,

— uzasadnienie wyboru dawek,

— uzasadnienie sposobu podawania i czasu trwania
narażenia,

— przełiczanie stężenia badanej substancji w pa-
ży/wodzie (ppm) na rzeczywistą dawkę (mg/kg
masy ciała/dzień), gdy podawano w paszy/wodzie,

— szczegóły dotyczące jakości paszy i wody.
Obserwacje i procedury badań:

— szczegóły dotyczące przypisania poszczególnych zwierząt w każdej grupie do podgrup przeznaczonych do perfuzji,

— szczegóły systemu punktacji wraz z kryteriami i skalą punktową dla każdego pomiaru w szczegółowych obserwacjach klinicznych,

— szczegóły badań czynnościowych oddziaływania czuciowego na bodźce o różnej modalności (np.: słuchowe, wzrokowe, propioceptywne); szacowanie siły chwytności, szacowanie aktywności ruchowej (wraz ze szczegółami z badań wykrywania aktywności urządzeniami automatycznymi) oraz inne stosowane procedury,

— szczegóły badań okulistycznych i, o ile wykonywano, badań hematologicznych, biochemii klinicznej wraz z wartościami uzyskanymi u zwierząt z grupy kontrolnej,

— szczegóły dotyczące poszczególnych procedur neurobehawioralnych, neuropatologicznych, neurochemicznych lub elektrofizjologicznych.

 Wyniki:

— masy ciała/zmiany masy ciała zwierząt także tych po uśmiercieniu,

— spożycie paszy i wody, o ile dotyczy,

— dane dotyczące reakcji toksycznych według płci i poziomu dawkowania, w tym oznaki toksyczności lub śmiertelności,

— charakter, nasilenie i czas trwania (czas pojawienia się i przebieg) szczegółowych obserwacji klinicznych (odwarcalne czy nie),

— szczegółowy opis wszystkich wykonanych badań czynnościowych,

— wyniki badania sekcyjnego,

— szczegóły wszelkich zmian neurobehawioralnych, neuropatologicznych, neurochemicznych lub elektrofizjologicznych,

— dane o absorpcji i metabolizmie, o ile dostępne,

— analiza statystyczna, gdy stosowano.

 Dyskusja wyników:

— zależność dawka-odpowiedź,

— związek jakichkolwiek innych skutków toksycznych z wnioskiem o potencjalne neurotoxycznym badanej substancji,

— poziom dawki bez obserwowanego działania szkodliwego.

Wnioski:

— określenie ogólnej neurotoxyczności badanej substancji.

4. PIŚMIENNICTWO


Tabela B.43.1:
Minimalne liczby zwierząt w grupie, gdy badanie neurotoksyczności wykonuje się oddzielnie lub w kombinacji z innymi badaniami

<table>
<thead>
<tr>
<th>BADANIE NEUROтокSYCZNOŚCI PROWADZONE JAKO:</th>
<th>Oddzielne badania</th>
<th>Badanie łączone z testem 28-dniowym</th>
<th>Badanie łączone z testem 90-dniowym</th>
<th>Badanie łączone z testem przewlekłym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Całkowita liczba zwierząt w grupie</td>
<td>10 samców i 10 samice</td>
<td>10 samców i 10 samice</td>
<td>15 samców i 15 samice</td>
<td>25 samców i 25 samice</td>
</tr>
<tr>
<td>Liczba zwierząt przeznaczonych do badań czynnościowych wraz z obserwacjami klinicznymi</td>
<td>10 samców i 10 samice</td>
</tr>
<tr>
<td>Liczba zwierząt przeznaczonych do perfuzji in situ i neurohistopatologii</td>
<td>5 samców i 5 samice</td>
</tr>
<tr>
<td>Liczba zwierząt przeznaczonych do powtarzanego dawkowania/obserwacji toksyczności podprzewlekjej/przewlekjej, hematologii, biochemii klinicznej, histopatologii itp., jak wykazano w odpowiednich Wytycznych</td>
<td>5 samców i 5 samice</td>
<td>10 samców i 10 samice</td>
<td>20 samców i 20 samice</td>
<td></td>
</tr>
<tr>
<td>Obserwacje uzupełniające</td>
<td>5 samców i 5 samice</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* W tym pięć zwierząt przeznaczonych do badań czynnościowych i szczegółowych obserwacji klinicznych jako część badania neurotoksyczności.
<table>
<thead>
<tr>
<th>Rodzaj obserwacji</th>
<th>Czas trwania badania</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ostre</td>
</tr>
<tr>
<td>u wszystkich zwierząt</td>
<td></td>
</tr>
<tr>
<td>ogólny stan zdrowotny</td>
<td>codziennie</td>
</tr>
<tr>
<td>śmiertelność/ zachorowalność</td>
<td>dwa razy dziennie</td>
</tr>
<tr>
<td>Szczegółowe obserwacje kliniczne</td>
<td></td>
</tr>
<tr>
<td>przed pierwszym narażenia</td>
<td>w ciągu 8 godzin po podaniu w przewidywanym okresie szczytowym</td>
</tr>
<tr>
<td>w 7 i 14 dni po podaniu</td>
<td>na tydzień</td>
</tr>
<tr>
<td>Badania czynnościowe</td>
<td></td>
</tr>
<tr>
<td>przed pierwszym narażenia</td>
<td>w ciągu 8 godzin po podaniu w przewidywanym okresie szczytowym</td>
</tr>
<tr>
<td>w 7 i 14 dni po podaniu</td>
<td>w ciągu 4 tygodni narażenia możliwie najbliżej okresu narażenia</td>
</tr>
<tr>
<td></td>
<td>sądowe</td>
</tr>
</tbody>
</table>