B.26. TOKSYCZNOŚĆ PODCHRONICZNA (90-DNIOWE POWTARZANE NARAŻENIE GRYZONI DROGĄ POKARMOWĄ)

1. METODA

1.1. Wprowadzenie

Szacowania i oceny właściwości toksycznych substancji chemicznej, określenia toksyczności podchrogenicznej za pomocą powtarzanego dawkowania można dokonać po uzyskaniu wstępnych informacji z badań toksyczności ostrej lub z badań po 28-dniowym podawaniu danej substancji. 90-dniowe badanie dostarcza informacji o możliwym zagrożeniu dla zdrowia mogącym być następstwem powtarzanej, przedłużonej ekspozycji obejmującej okres dojrzewania i wzrostu, aż do okresu dojrzalości.

Badanie powinno dostarczyć informacji na temat głównych skutków toksycznych, wskazać narządy krytyczne i możliwość kumulacji oraz pozwolić na oszacowanie najwyższej dawki lub poziomu ekspozycji, przy którym nie obserwuje się szkodliwych objawów wynikających z podawania substancji testowanej (NOAEL), który może być następnie użyty do wyboru dawkowania w badaniu przewlekłym i określenia kryteriów bezpieczeństwa dla narażenia człowieka.

Metoda badania toksyczności podchrogenicznej składa dodatkowo nacisk na objawy neurologiczne oraz wskazuje na efekty immunologiczne i reprodukcyjne. Podkreśla się również potrzebę starannych obserwacji klinicznych zwierząt w celu uzyskania jak największej informacji. Badanie powinno pozwolić na identyfikację substancji chemicznych mogących wywoływać w narządach efekty neurotoksyczne, immunologiczne lub reprodukcyjne, które mogą wskazać na potrzebę dalszych, bardziej pogłębiających badań.

1.2. Definicje

1. Dawką jest to ilość podanej substancji testowanej. Dawka jest wyrażona w jednostkach wagowych (gramy lub miligramy) lub też jednostkach wagowych bądkjej substancji na jednostkę masy ciała badanych zwierząt (miligram/kilogram masy ciała), lub jako stałe stężenie w paszy (ppm czy mg/kg paszy).

2. Dawkowanie jest ogólnym terminem obejmującym dawkę, częstość i długość okresu jej stosowania.

3. NOAEL określa najwyższą dawkę lub poziom ekspozycji, przy którym nie obserwuje się szkodliwych objawów wynikających z podawania substancji testowanej (No Observed Adverse Effect Level).

1.3. Zasada badania

Badaną substancję podaje się drogą pokarmową codziennie w stopniowanych dawkach kilku grupom doświadczalnym; jedna dawka dla każdej grupy przez 90 dni. Podczas narażenia zwierząta obserwuje się codziennie w celu stwierdzenia objawów działania toksonicznego. Zwierzęta, które padną podczas doświadczenia, poddaje się sekcji, a na końcu doświadczenia sekcję wykonuje się u wszystkich zwierząt, które przeżyły.

1.4. Zasady stosowanych metod badań

1.4.1. Przygotowanie zwierząt

1.4.2. Przygotowanie dawek

Badana substancja może być podawana przez zgnębik, w paszy lub w wodzie do picia. Sposób podawania zależy od celu badania i od właściwości fizykochemicznych badanego materiału.

O ile jest to niezbędne, badaną substancję rozpuszcza się lub zawiesza w odpowiednim nośniku. Zaleca się, aby w miarę możliwości w pierwszej kolejności stosować roztwór/zawiesinę wodną, następnie należy wziąć pod uwagę roztwór/zawiesinę w oleju (np. oleju lukurydzianym), a potem możliwość stosowania innych nośników. Dla nośników innych niż woda muszą być znane ich właściwości toksyczne. Należy znać trwałość badanej substancji w stosowanym nośniku.
1.4.3. Warunki doświadczenia

1.4.3.1. Zwierzęta doświadczalne

1.4.3.2. Liczba i płci zwierząt

Co najmniej 20 zwierząt (10 samic i 10 samców) należy użyć dla każdej dawki. Jeżeli planuje się uśmiearczenie zwierząt w trakcie doświadczenia, to liczba zwierząt powinna być zwiększona o tyle, ile planuje się przeznaczyć do badań sekcyjnych przed zakończeniem badania. W oparciu o dotychczasowe dane o substancji chemicznej lub jej bliskich analogach, w celu obserwacji odwracalności lub utrwalenia skutków działania toksonicznego, należy rozważyć zastosowanie dodatkowej grupy satelitarnej, liczącej 10 zwierząt (5 każdej płci) narażonych na najwyższą dawkę, oraz grupy kontrolnej. Okres obserwacji po zakończeniu ekspozycji należy odpowiednio ustalić, uwzględniając obserwowane skutki.

1.4.3.3. Poziomy dawkowania

Badania powinny być wykonane na co najmniej trzech grupach zwierząt (3 poziomy dawkowania) i u zwierząt grupy kontrolnej, z wyjątkiem przypadku kiedy przeprowadza się test dawki granicznej (1.4.3.4.). Poziomy dawkowania można ustalić w oparciu o badania toksyczności dawki powtarzanej, należy uwzględnić także istniejące dane o toksyczności i toksykokinetyce badanej substancji lub substancji o zbliżonych właściwościach. O ile nie ma ograniczeń spowodowanych właściwościami fizykochemicznymi lub skutkami biologicznymi, najwyższy poziom dawkowania należy tak dobrać, by wywołał on skutki toksyczne, jednak nie powodował padnięcia lub poważnego cierpienia zwierząt. Zmniejszająca się sekwencja poziomów dawkowania powinna być tak dobrana, aby można było wykazac zależność od poziomu odpowiedź, a na najmniejszym poziomie dawkowania brak szkodliwych objawów wynikających z podawania testowanej substancji (NOAEL). Najczęściej optymalny mnożnik różnicujący poziomy dawkowania wynosi 2 lub 4, a dodanie czwartej grupy narażanej jest niejednokrotnie lepsze, niż stosowanie bardzo dużych przedziałów pomiędzy poziomami dawkowania (np. współczynnik większy niż 6-10).

Zwierzęta z grupy kontrolnej nie powinny być eksponeowane lub powinny otrzymywać nośnik stosowany przy podawaniu substancji badanej. Zwierzęta grupy kontrolnej należy traktować identycznie jak zwierzęta z grup doświadczalnych, z wyjątkiem podawania badanej substancji. Jeżeli używany jest nośnik, to zwierzęta z grupy kontrolnej powinny otrzymywać w największej stosowanej objętości. W przypadku gdy badana substancja podawana jest w paszy i powoduje zmniejszenie spożycia, wtedy użytkownicy jest zastosowanie dodatkowej grupy kontrolnej w celu rozróżnienia zmniejszenia spożycia wskutek zmiany smaku lub zmian toksykologicznych w układzie badawczym.

Należy zwrócić uwagę na następujące cechy nośnika lub innych dodatków, takie jak wpływ na absorpcję, rozmieszczenie, metabolizm lub retencję badanej substancji, oddziaływanie na badaną substancję w sposób mogący zmieniać jej właściwości toksyczne, wpływ na spożycie paszy lub wody lub stan odżywienia zwierząt.

1.4.3.4. Badanie wartości dawki granicznej

Jeżeli w 90-dniowym doświadczeniu przeprowadzonym zgodnie z opisanymi metodami, przy narażeniu na jeden poziom dawkowania wynoszący co najmniej 1000 mg/kg masy ciała/dzień nie obserwuje się szkodliwych objawów wynikających z działania toksycznego substancji testowanej i gdy nie przewiduje się działania toksycznego w oparciu o dane dotyczące substancji o zbliżonej strukturze, to wykonywanie pełnego badania z zastosowaniem trzech poziomów dawkowania może nie być konieczne. Testu wartości granicznych nie stosuje się, gdy ekspozycja ludzi wskazuje na potrzebę zastosowania wyższych poziomów dawkowania.
1.5. Opis metody

1.5.1. Poziomy dawkowania

Badaną substancję podaje się zwierzętom przez 7 dni w tygodniu przez okres 90 dni. Inny reżim podawania np. 5 dni w tygodniu powinno się uzasadnić. Gdy badaną substancję podaje się za pomocą zglębniaka, należy tego dokonać w pojedynczych dawkach, używając sondy dołożalowej lub odpowiedniej rury intubacyjnej. Największa objętość płynu, jaką można podać jednorazowo, zależy od wielkości zwierzęcia laboratoryjnego. Objętość ta nie powinna być większa od 1 ml/100 g masy ciała, roztworów z wyjątkiem roztworów wodnych, które można podawać do 2 ml/100 g masy ciała. Z wyjątkiem substancji o działaniu drażniącym lub zrącznym, które w wyższych stężeniach zazwyczaj mogą nasilać skutki, należy zminimalizować zmienność objętości, dobierając stężenia tak, aby zapewnić stałą objętość na wszystkich poziomach dawkowania.

W przypadku podawania substancji z paszą lub w wodzie pitnej, ważne jest zapewnienie, aby wprowadzona ilość substancji badanej nie zakłócała normalnego żywienia lub równowagi wodnej. Gdy badana substancja podawana jest z paszą, należy stosować albo stałe stężenie w paszy (w ppm), albo stałe dawki w stosunku do masy ciała zwierząt; należy podać wybrany sposób. W przypadku podawania substancji do żołądka za pomocą sondy, należy podawać ją o tej samej godzinie każdego dnia i korygować w miarę potrzeby stały poziom dawkowania w stosunku do masy ciała. Gdy badanie 90-dniowe wykonywane jest jako wstępne do badań długoterminowych, przewlekłych, należy używać tej samej paszy w obydwu badaniach.

1.5.2. Obserwacje

Okres obserwacji powinien wynosić co najmniej 90 dni. Zwierzęta z grupy satelitarnej, planowanej do dalszych obserwacji, należy utrzymać przez odpowiedni okres bez narażania, celem wykrycia utrzymywania się, względnie ustawienia skutków toksycznych.

Ogólne obserwacje kliniczne należy przeprowadzać przynajmniej raz dziennie, najlepiej o tej samej porze, uwzględniając szczetowy okres wystąpienia przewidywanych skutków po narażeniu. Należy odnotować stan kliniczny zwierząt. Przynajmniej dwa razy dziennie, zazwyczaj na początku i pod koniec dnia, wszystkie zwierzęta należy skontrolować pod kątem zachorowalności i umieralności.

Przynajmniej raz przez podstawny narażenie (w celu porównania wewnętrznych między osobnikami) i następnie przynajmniej raz w tygodniu u wszystkich zwierząt należy przeprowadzić szczegółowe badania kliniczne. Badania te należy przeprowadzać poza kratką, w standardowym miejscu i najlepiej każdorazowo o tej samej godzinie. Obserwacje należy starannie opisać, najlepiej używając systemów punktowych, wyraźnie określonych przez laboratoryum badawcze. Należy dołożyć starych, aby zmiany w warunkach badania były minimalne. Opis obserwacji powinien zawierać, lecz nie ograniczać się do zmian w skórze, sierści, oczu, błon śluzowych, występowania wydzielin i wydalin oraz czynności autonomicznych (np. zawrót, zanik, wielkość zręcen, nieprawidłowy sposób oddychania). Również należy odnotować zmiany chodu, postawy, reakcji na chwytanie, jak również obecność ruchów tonicznych lub klonicznych, ruchy stereotypowe (np. nadmierne czyszczenie się, ciągłe obracanie się) lub nietypowe zachowanie (np. samookaleczenie, chodzenie do tyłu) 1). Przed rozpoczęciem podawania badanej substancji i pod koniec doświadczenia należy przeprowadzić badania okulistyczne, używając ofalmaskopu (wziernika ocznego) lub odpowiedniego równorzędnego urządzenia, raczej u wszystkich zwierząt bądź przynajmniej u zwierząt narażonych na najwyższą dawkę i u zwierząt z grupy kontrolnej. W przypadku stwierdzenia zmian w oczach należy przebadanie wszystkie zwierzęta.

Krótko przed zakończeniem narażenia, w każdym razie nie wcześniej niż w 11 tygodniu, należy przeprowadzić badania reakcji na różnego rodzaju bodźce czuciowe 2) (np. bodźce słuchowe, wzrodkowe, działające na receptory odpowiedzialne za postawę ciała) 3), 4) oraz ocenę siły uchwytu 5) i aktywności motorycznej 7).

szczegóły procedur, według których należy postępować, podano w odpowiednich pozycjach piśmiennictwa. Można również stosować procedury alternatywne.

Badania czynnościowe przeprowadzane pod koniec doświadczenia można pominać, gdy dostępne są dane z innych badań oraz gdy codzienne obserwacje kliniczne nie ujawniły jakichkolwiek zaburzeń czynnościowych. Wyjątkowo, obserwacje czynnościowe mogą zostać pominiete dla grup, w których zwierzęta inaczej ujawniły oznaki toksyczności w zakresie mogącego znacząco utrudniać przeprowadzenie testów czynnościowych.

1.5.2.1. Masa ciała i spożycie wody/paszy

Wszystkie zwierzęta należy ważyć przynajmniej raz w tygodniu. Pomiary spożycia paszy powinny być dokonywane przynajmniej co tydzień. W przypadku gdy badana substancja podawana jest w wodzie do picia, przynajmniej raz w tygodniu należy zmierzać spożycie wody. Pomiary spożycia wody należy dokonywać również przy podawaniu substancji z paszą lub przez sondę, gdyż spożycie wody w tych przypadkach może być zakończone.

1.5.2.2. Badania hematologiczne i biochemiczne

Próbki krwi należy pobrać z ustalonego miejsca i przechowywać, o ile to konieczne, w odpowiednich warunkach. Na zakończenie doświadczenia próbkę należy pobrać tuż przed lub w trakcie zabijania zwierząt.

Na zakończenie doświadczenia oraz, o ile pobiera się krwę, w trakcie jego trwania należy wykonywać następujące oznaczenia: hematokrty, zawartość hemoglobiny, liczba erytrocytów, całkowita liczba białych ciałek krwi i ich wzór odsetkowy, liczba krwi oraz pomiar czasu/potencjału krzepnięcia krwi.

Kliniczne badania biochemiczne należy przeprowadzić w próbkach krwi pobranych od wszystkich zwierząt, tuż przed lub w trakcie ich zabijania (oprócz zwierząt podanych lub zabitych w czasie trwania doświadczenia), w celu wykrycia w tkankach znaczących skutków toksycznych, zwłaszcza w nerwach i w wątrobie. Podobnie jak w badaniach hematologicznych należy postępować w przypadku pobierania krwi do oznaczeń biochemicznych dokonywanych w trakcie doświadczenia. Zaleca się głośdzenie zwierząt przez noc przed pobrańiem próbek krwi 1). Badanie osocza lub surowicy krwi powinno obejmować oznaczenia poziomu sodu, potasu, glukozy, całkowitego cholesterolu, mocznika, azotu niebiłkowego, kreatyniny, białka całkowitego i albumin, co najmniej dwa enzymy wskazujące na uszkodzenie hepatocytów (aktywność aminotransferazy alaninowej, aminotransferazy asparaginianowej, fosfatazy zasadowej, gamma-glutamyltranspeptydazy, dehydrogenazy sorbitolowej). Oznaczenia aktywności dodatkowych enzymów (wątrobowych lub innego pochodzenia) i poziomu kwasów żółciowych mogą dostarczyć w pewnych warunkach użytkowych informacji.

Opcjonalnie, w ostatnim tygodniu narażenia można dokonać następujących oznaczeń w moczu zbieranym w odpowiednim okresie czasu: wygląd, objętość, osmolarność lub ciężar właściwy, wartość pH, zawartość białka, glukozy i obecność krwi/komórek krwi.

Dodatkowo należy rozważyć oznaczanie w surowicy krwi markerów uszkodzenia tkanki. Inne oznaczenia, które powinny być przeprowadzone, wynikają z faktu, gdy znane są lub istnieją podejrzenia, że badana substancja może wpływać na związane z nimi profile metaboliczne obejmujące wapń, fosforany, triglicerydy na czecz, swoiste hormony, stężenie methemoglobin i aktywność esterazy acetylocholinowej. Potrzebę tych badań ustala się dla pewnych grup substancji chemicznych lub w indywidualnych przypadkach.

Ogólnie, istnieje potrzeba elastycznego podejścia w zależności od gatunku i obserwowanych i/lub spodziewanych skutków wywoływanych przez daną substancję.

W przypadku gdy podstawowe, archiwalne dane są niewystarczające, należy wziąć pod uwagę potrzebę oznaczania zmienności hematologicznych lub biochemicznych przed rozpoczęciem ekspozycji; generalnie nie zaleca się pozyskiwania tych danych przed narażaniem zwierząt 2).

1) Dla szeregu pomiarów w surowicy lub osoczu szczególnie glukozy zalecane jest głośdzenie przez noc. Głównym powodem tego zalecenia jest duża zmienność, która nieuchronnie może wynikać z braku głośdzenia, co może prowadzić do maskowania bardziej subtelnych skutków i utrudniać interpretację. Z drugiej strony całonocne głośdzenie może wpływać na ogóły metabolizm zwierząt, a zwłaszcza w badaniach paszowych może zakłócić dzienne narażenie na badaną substancję. W przypadku stosowania całonocnego głośdzenia to oznaczenia wskaźników kliniczno-biochemicznych należy dokonać po przeprowadzeniu badań czynnościowych.

1.5.2.3. Badanie sekcjonalne

Wszystkie zwierzęta powinny być poddane pełnej sekcji, w której zakres wchodzi szczegółowe badanie zewnętrznego powierzchni ciała, wszystkich otworów naturalnych ciała oraz jamy czaszkowej, piersiowej i brzusznej wraz z ich zawartością. Aby uniknąć wysychania, wątroby, nerki, nadnercza, jądra, najastrę, macicy, jajników, grasicę, śledzionę, mózgówie i serce pobrane od wszystkich zwierząt (z wyjątkiem padlący i/lub zabitych w trakcie doświadczenia) należy uwolnić w miarę potrzeby od otaczających tkanek i następnie, tak szybko jak to jest możliwe, określić ich mokrę masę.

Do badań histopatologicznych należy zabezpieczyć w odpowiednim płynie utrwalającym następujące narządy i tkanki: w szczególności, w których stwierdzono makroskopowo zmiany, mózgowe (reprezentatywne części mózgu, mózdku, rdzenia/mostu), rdzeń kręgowy (3 odcinki – szyjny, środkowo-piersiowy i łędużowy), przysadkę, tarczycę, przystarczycie, grasicę, przelyk, ślinianki, żołądek, jelito cienie i grube (łączne z kępkami Peyer), wątroby, trzustkę, nerki, nadnercza, śledzionę, serce, trzustkę i płucę (zabezpieczone za pomocą dotchawczego wstrzykiwania utrwalacza i następnie immersyjnie), aortę, gonady, macicę, dodatkowe narządy układu rozrodczego, u samiec gruczoły moczne, gruczoł krokowy, pęcherz moczowy, pęcherz ziolkowy (mysz), węzły chlonne (jeden węzeł związan z drogą podaną i innym odległym od drogi podania, wskazujący na skutki ukladowe), nerw obwodowy (kułszowy lub piszczelowy) raczej ścieśniej związany z mięśniem, wycinek szpiku kostnego (i/lub świeżo sporządzony aspirat szpiku kostnego), skórę i oczy (w przypadku gdy badanie okulistyczne wykazało zmiany). Wyniki badań klinicznych lub innych mogą wskazywać na potrzebę badania dodatkowych tkanek. Również należy zabezpieczyć w utrwalaczu narządy, które na podstawie znanych właściwości badanej substancji są prawdopodobnie narządkami krytycznymi.

1.5.2.4. Badanie histopatologiczne

Pełna ocena histopatologiczna zabezpieczonych w utrwalaczu narządów i tkanek powinna być wykonana u zwierząt z grupy kontrolnej i grupy narażonej na najwyższą dawkę. Badania te należy wykonać u zwierząt z wszystkich innych grup, gdy u zwierząt z grupy narażonej na najwyższą dawkę obserwuje się zmiany. Powinny być zbadane wszystkie zmiany stwierdzone makroskopowo. Jeżeli stosowana jest grupa towarzysząca, to należy wykonać badania histopatologiczne tych tkanek i narządów, w których stwierdzono zmiany w grupach narażanych.

2. WYNIKI I SPORZĄDZANIE SPRAWOZDANIA

2.1. Wyniki

Należy podać dane indywidualne. Uzyskane wyniki należy zebrać w formie tabel, zamieszczać w nich dla każdej grupy: liczbę zwierząt na początku doświadczenia, liczbę zwierząt, które padły lub ze względów humanitarnych zostały zabite w trakcie doświadczenia, oraz datę padnięcia lub likwicacji, liczbę zwierząt o zmianach niedożywiającym, opis obserwowanych objawów z podaniem daty ich wystąpienia i trwania oraz stopnia nasilenia, liczbę zwierząt, u których stwierdzono uszkodzenia, charakter zmian i odsetek zwierząt wykazujących każdy typ uszkodzenia.

W miarę potrzeby wyniki liczbowe powinny być ocenione za pomocą odpowiednich i ogólnie uznanych metod statystycznych. Metody statystyczne i dane, które należy analizować, powinny być wybrane w trakcie planowania badania.

2.2. Sprawozdanie z badań

W sprawozdaniu zamieszczana się, z uwzględnieniem zakresu badań, następujące informacje:

1) substancja badana:
 - stan fizyczny, czystość, właściwości fizykochemiczne,
 - dane identyfikujące,
 - nośnik (gdy stosowano), uzasadnienie wyboru nośnika innego niż woda;

2) zwierzęta laboratoryjne:
 - stosowany gatunek i szczep,
 - liczba, wiek, płeć zwierząt,
 - źródło pochodzenia, warunki przetrzymywania, dieta itp.,
 - masa poszczególnych zwierząt na początku badania;

3) warunki przeprowadzenia badania:
 - uzasadnienie wyboru poziomu dawkowania,
- szczegóły dotyczące receptury przygotowania badanej substancji/sporządzenia diety, osiąganego stężenia, trwałości i jednorodności mieszanki,
- szczegóły dotyczące podawania badanej substancji,
- rzeczywiste dawki (mg/kg masy ciała/dzień) oraz współczynniki przeliczeniowe stężenia badanej substancji w diecie/wodzie pitnej na rzeczywiste dawki, jeżeli się je stosuje,
- dane dotyczące jakości paszy i wody;

4) wyniki:
- masa ciała i zmiany masy ciała,
- spożycie paszy, spożycie wody, gdy jest to konieczne,
- dane dotyczące odpowiedzi na działanie toksyczne w powiązaniu z dawką i płcią, łącznie z objawami działania toksycznego,
- charakter, nasilenie i czas trwania objawów klinicznych (odwrotnie czy nie),
- wyniki badań okulistycznych,
- dane dotyczące czynności czuciowych, siły chwytnej i aktywności motorycznej (o ile osiągalne),
- dane hematologiczne z przynależnymi wartościami podstawowymi,
- dane z biochemii klinicznej z przynależnymi wartościami podstawowymi,
- dane dotyczące masy ciała przed uśmierceniem, masy narządów i stosunku masy narządów do masy ciała,
- opis zmian makroskopowych,
- szczegółowy opis wszystkich zmian histopatologicznych,
- dane o absorpcji, o ile są dostępne,
- opracowanie statystyczne wyników, jeśli wykonano;

5) dyskusja wyników;

6) wnioski.